您现在的位置是:首页 >其他 >Yolov5/Yolov7涨点技巧:MobileViT移动端轻量通用视觉transformer,MobileViTAttention助力小目标检测,涨点显著网站首页其他
Yolov5/Yolov7涨点技巧:MobileViT移动端轻量通用视觉transformer,MobileViTAttention助力小目标检测,涨点显著
简介Yolov5/Yolov7涨点技巧:MobileViT移动端轻量通用视觉transformer,MobileViTAttention助力小目标检测,涨点显著
1. MobileViT介绍

论文:https://arxiv.org/abs/2110.02178
现有博客都是将MobileViT作为backbone引入Yolov5,因此存在的问题点是训练显存要求巨大,本文引入自注意力的Vision Transformer(ViTs):MobileViTAttention
MobileViT是一种基于Transformers的轻量级模型,它可以用于图像分类任务。相比于传统的卷积神经网络,MobileViT使用了轻量级的注意力机制来提取特征,从而在保证较高精度的同时,具有更快的推理速度和更小的模型体积。它在移动设备上的应用具有很大的潜力。

自从2020年 ViT 网络被提出并取得和传统 CNN 网络差别不大的性能表现之后,越来越多的研究者开始探究 Transformer 架构在计算机视觉领域的巨大潜力,将 Transformer 架构引入各类视觉任务中并取得了不错的成就。但是,Transformer 网络在实际落地运用中相较于传统的 CNN 网络还是存在着诸多问
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。





U8W/U8W-Mini使用与常见问题解决
QT多线程的5种用法,通过使用线程解决UI主界面的耗时操作代码,防止界面卡死。...
stm32使用HAL库配置串口中断收发数据(保姆级教程)
分享几个国内免费的ChatGPT镜像网址(亲测有效)
Allegro16.6差分等长设置及走线总结